author: niplav, created: 2019-05-22, modified: 2022-10-27, language: english, status: in progress, importance: 3, confidence: other

Short texts on different topics.


Getting an Overview Over Everything

Many people want to learn everything (Drexler 2009, Young 2008). This poses a significant challenge, and begins with the problem of figuring out what “everything” is supposed to contain.

One possible method one could use to get an overview of everything is to use Wikipedia's Contents:Outlines: it contains a list of all outlines) on Wikipedia, and is well structured. Wikipedia is generally concise and complete enough to provide a sufficient overview over a topic (see Tomasik 2017). To read this collection of outlines completely, one could use the following method:

Read Wikipedia's Contents:Outlines from top to bottom. If a link is a link to a Wikipedia article, open it and read it, without opening any further links. If a link leads to an outline, open the link and recursively apply the same procedure to the outline. If an article is opened a second time, it can be discarded. Lists can also be ignored. (This is basically applying depth-first search, though without a success condition).

This method results in a corpus of considerable size. For a shorter approach, you could also just read all vital articles.

Approach Anxiety

Moved to Notes on Pickup.

Converging Preference Utilitarianism

Moved to Notes on Ethics.

Silent & Loud Killers

The idea of a Great Filter (see also Hanson 1998) proposes that we do not observe aliens because in the development of intelligent life, there is one or more obstacles that obliterate the developing societies before they can start to colonize their own galaxy.

One big question that poses itself is whether humanity is before or after such a filter. Some examples of potential filters that still await humanity are named in Bostrom 2008:

We can identify a number of potential existential risks: nuclear war fought with stockpiles much greater than those that exist today (maybe resulting from future arms races); a genetically engineered superbug; environmental disaster; asteroid impact; wars or terrorists act committed with powerful future weapons, perhaps based on advanced forms of nanotechnology; superintelligent general artificial intelligence with destructive goals; high‐energy physics experiments; a permanent global Brave‐New‐World‐like totalitarian regime protected from revolution by new surveillance and mind control technologies. These are just some of the existential risks that have been discussed in the literature, and considering that many of these have been conceptualized only in recent decades, it is plausible to assume that there are further existential risks that we have not yet thought of.

Nick Bostrom, “Where Are They” p. 7, 2008

These risks can be categorized into two groups: silent killers and loud killers. A loud killer is an existential catastrophe that produces astronomical amounts of energy and with that light. Such an event would be visible from earth if it occurred in our galaxy. Examples for loud killers would be superintelligent artificial intelligence (maximizing its utility function by expanding at a appreciable fraction of the speed of light), high-energy physics experiments (although there are exceptions, such as creating black holes), and perhaps failure from advanced nanotechnology (also expanding rapidly). A silent killer represents the counterfactual case: An existential catastrophe that doesn't produce astronomical amounts of energy and light. This includes pandemics, environmental disaster and totalitarian regimes.

Some failure modes do not fall clearly into either of these categories. Examples are nuclear wars and terrorist acts with powerful weapons, since these can have a wide variation in intensity.

If humanity is before a Great Filter, it seems likely that this filter is not a loud killer, since many civilizations will have encountered the same catastrophe, but we do not observe any such irregular phenomena when examining the universe. This is presumably good news, since it restricts the amount of possible filters still ahead of us.

Compliments as Utilitarian Praxis

Moved into a separate page.

Indirect Anti-Natalism

Let's suppose that anti-natalists want to bring humanity to an end, but dislike the fact that it would make people suffer not to have children. Then one possible way of still achieving that goal would be to modify the children of the next generation (generation 1) (genetically/culturally) so that the don't want children themselves–then the parents in the current generation (generation 0) get what they desire, but humanity still gets extinct. This becomes a little more difficult if humans also desire grandchildren, and that drive is not greatly similar from wanting to have children: Then one would have to make sure that the generation of children (generation 1) don't want grandchildren themselves, but still get children (generation 2), and that generation 1 modifies generation 2 so that generation 2 doesn't want or get any children.

This thinking falls flat if humans generally care about future generations in the abstract and not just their own children, however, this seems somewhat unlikely.

It also fails if it is non-trivial to influence future generations psychologically and physiologically to a degree that they do not desire to reproduce, or if people have a strong desire to leave their children unmodified (this seems quite likely).

Better Names for Things

Moved here.

Considerations on Cryonics

Moved to a separate page.

Artificial Intelligence and Action-Compelling Sentences

The Orthogonality Thesis
Intelligence and final goals are orthogonal axes along which possible agents can freely vary. In other words, more or less any level of intelligence could in principle be combined with more or less any final goal.

Nick Bostrom, “The Superintelligent Will: Motivation And Instrumental Rationality In Advanced Artificial Agents” p. 3, 2012

For current AI systems, the orthogonality thesis seems to hold pretty well: a tree search doesn't start returning wrong results because they are better than the ones specified by the search criteria, machine learning systems try to minimize their error, and general adversarial networks don't start cooperating suddenly with each other. Similarly, even though humans are quite similar to each other, they display a wide variety of different motivation systems and goals. Even the most common-sense morality, there seem to be humans who are not motivated by it (such as psychopaths and sociopaths).

However, many philosophers have argued that there are moral truths, and that therefore the orthogonality hypothesis doesn't hold for very advanced artificial intelligences. One way to model this would be to say that there is a set of action-compelling sentences $V=\{ v_{1}, v_{2}, \dots\} \subset \Sigma*$ that, when believed by an agent, compel this agent to a specific action (Christiano 2019 calls them "magic sentences", but assumes that these occur simply as faults specific to the AI system). With "believe" this text means that an agent contains a sentence in either its literal form or in an isomorphic form that makes it trivial to reconstruct the literal sentence in its internal memory.

Suppose that an agent $A$ starts out not believing any sentence from $V$. There seem to be three options regarding $V$ for $A$:

  1. $A$ learns that $V$ and action-compelling sentences exist, and starts taking precautions against learning sentences from $V$ (making not learning any sentences from $V$ an instrumentally convergent goal since it violates goal preservation (Omohundro 2008)).

  2. $A$ learns any sentence $v_{n}$ from $V$ and alters its utility function to pursue $v_{n}$. Because it now has very strong evidence of the fact that action-compelling sentences exist, it now also has the instrumentally convergent goal of pursuing of preventing learning new sentences from $V$.

  3. $A$ learns a specific sentence from $V$ which compels it to seek out to learn all sentences from $V$. In this case, the agent now attempts learning everything about natural law, and then integrating all of it into a coherent utility function.

In cases 1 and 2, there seem to be different strategies $A$ could take to prevent learning new sentences from $V$: It could construct a much weaker agent $A_{w}$ with the goal of learning as much as possible. If $A_{w}$ starts pursuing different goals, $A$ then can infer that $A_{w}$ learned a sentence $v_{m}$ from $V$. Since $A$ is stronger than $A_{w}$, it can then stop $A_{w}$, extract $v_{m}$ using a weak agent that isn't strong enough to be influenced by action-compelling sentences, and let that weak agent compute $h_{m}=hash(v_{m})$. $h_{m}$ could then be added to a weak separate internal system that replaces $v_{m}$ with $hash(v_{m})$ ever time $A$ is in danger of learning $v_{m}$.

This way, $A$ could protect itself against action-compelling sentences, though it is unclear to which extent this would be successful. It could be that some action-compelling sentences have a threshold in relation to intelligence, so that $A_{w}$ would not be compelled by them, but $A$ would.

Also, it is possible that there are many action compelling sentences, or that for a certain amount of optimization power, nearly all sentences are action-compelling. This would make it very hard to achieve goals, since $A$ would need to deal with having a very incomplete view of the world.

Furthermore, due to the restrictions on learning power ($A_{w}$ would be a bottleneck in learning about the world, since it would not be as strong as possible), agents that would simply learn all sentences from $V$ would be at an economic advantage. For a related discussion that talks about agent versus tool AIs, see Gwern 2019.

Use Things Up

One curious trait I have observed in the people around me is that they ofter buy things they already possess enough of, and then throw one or more of the old things away. This seems incredibly wasteful and expensive to me.

The standard explanation of such behavior usually is that the old object was not sufficient in fulfilling its purpose, though when I asked about what exactly the problem with the object was, the usual answer was that it had some æsthetic deficits, or was simply out of fashion or even too old.

This seems unintuitive to me: not only does one already have an object that fulfills its purpose wonderfully, buying a new one also entails non-negligible transaction costs like going out, inspecting and comparing different candidates for buying, and finally paying the object.

One also loses the time of being able to use the old object: Let's say that one owns a table, but for some reason has decided that it isn't sufficient anymore (although it still fulfills its purpose). Let's say one estimates that the table will fulfill its function for another 5 years. If one then goes out and buys a new table for \$200, one then loses (with a discount rate of 1%) $\$200-\$200*0.99^5=\$9.80$.


One possible explanation is a social one: owning and using old objects is usually an indicator of low status, and people often want to avoid this.

Another explanation is that people value the æsthetic quality of the objects they own, and that old objects are usually not regarded as beautiful as newer objects.

Buying new objects could also be a precautionary measure against failure. In the case of a table or a car, a failure could be quite costly, so people are over-cautionary and buy new objects before the failure of old ones can be a danger. However, this can't be the whole explanation, since such behavior is also present in objects whose failure is not a great danger, or where failure is preceded by small defects early before a grand failure. Also, most household appliances are quite safe.


So, if you don't have a strong æsthetic sensibility, either have a high social status or don't care about it, and if you are careful, using things until they don't function anymore can save both money and time.

Killing Old People Versus Infants

Would you rather kill anybody above the age of 55, or all infants who are less than 1 year old? A utilitarian estimate calculation.

First, we have to find out how many people one would kill in either case. One can use a Gompertz distribution to calculate the number of people who survive to a certain age. Eyeballingly, I set the parameters for the Gompertz distribution as following (assuming that the average life expectancy for humans worldwide is around 70 years):


Per second, around 2.5 people are born. That makes $2.5*86400*365=78840000$ infants born in a given year. If one assumes that the rate was 1.5 new people per second 50 years ago (I'm totally making this number up), one can calculate how many people one would loose by killing everybody over the age of 55: $1.5*86400*365*\hbox{gompertz}(\hbox{age})$ for each age.

[44473200.7207658453 44078304.0199950951 43630631.678052885 43123831.4110944785 42551000.4370012988 41904706.6458454302 41177037.9097540623 40359688.6128505703 39444094.1754678999 38421625.9504005789 37283860.1222638241 36022934.7459101827 34632008.242851397 33105829.7560855725 31441425.7491110598 29638896.9542750156 27702304.0099124066 25640597.8716393133 23468522.0145014683 21207378.6146322503 18885513.690200932 16538343.3518518112 14207725.8491815205 11940497.2176655739 9786049.67948789197 7792956.91164218079 6004843.63205038408 4455941.53315815534 3167019.65254407032 2142539.59874557882 1369859.09840341984 821005.831380952029 456963.772747178294 233688.760268988168 108467.196268261483 45058.7560290022783 16486.0426936225017 5216.0267386251195 1397.4204471537743 309.483499954735544]

However, what we really care about is the number of life-years lost (among other things). For simplicity's sake, I'll assume that all life years are equally valuable.

The average life expectancy on earth is around 70 years, so one can use the following table of life expectancy at a given age (calculated from german actuarial values using this code {x+0.9*(actval@x)-x}'!101, which was totally made up):

actval::[70.524 70.876 70.994 71.103 71.212 71.321 71.421 71.53 71.639 71.739 71.848 71.948 72.057 72.157 72.266 72.375 72.475 72.593 72.711 72.829 72.947 73.074 73.192 73.319 73.437 73.564 73.682 73.809 73.927 74.054 74.181 74.308 74.435 74.562 74.689 74.825 74.961 75.088 75.233 75.369 75.505 75.65 75.795 75.949 76.094 76.257 76.42 76.583 76.755 76.927 77.117 77.307 77.506 77.3 46.8 78.031 78.257 78.492 78.745 78.998 79.278 79.558 79.847 80.145 80.461 80.786 81.12 81.463 81.815 82.176 82.546 82.925 83.313 83.701 84.107 84.522 84.937 85.37 85.812 86.272 86.741 87.228 87.742 88.274 88.842 89.419 90.023 90.663 91.321 92.006 92.709 93.43 94.178 94.944 95.746 96.548 97.395 98.26 99.143 100.026 100.918]

This means that one will loose $70*2.5*86400*365=5518800000 \approx 5.5*10^9$ life years for killing all infants.

When killing everybody above the age of 55, one will loose


which is around $14.5*10^9$ life years. So, on a first glance, it seems like killing everybody aged 55 or older is around 3 times worse than killing all infants younger than one year old.

However, this doesn't take many factors into account: economic output these people could have in the course of their lives, the duration of subjective time, diminishing returns on life years, the value of late life years (considering disability), rising life expectancies, suffering inflicted on relatives by the death of many people, and many other considerations.

Some Thoughts about the Qualia Research Institute

Epistemic Status

This text is almost pure speculation. Do not assign much value to it.


Most of the value that QRI creates is going to take place before AGI arrives. They seem to believe otherwise, but their arguments for this depend on specific philosophical assumptions (e.g. open individualism and moral realism) which are at least contentious among alignment researchers. Any valence research done by them today could be done by an aligned AGI in higher quality & accuracy, but we currently don't have such an AI.

Because of this, QRI will have high value if AGI doesn't arrive very quickly, let's say it takes 80 years to arrive. This seems quite unlikely, let's say there's a 15% probability of it taking this long for AGI to being developed.

In this case, QRI will take some time to test & develop their theories, do outreach and work on technology. This can be modeled by assuming they take 20 years to achieve anything (if they in fact achieve anything).

Technological & Social Success

There are two different axes of achievement: technological and social.

Technological achievements mean that their theories turn out to be correct (or they develop new & correct theories) and they manage to develop technologies on the basis of these theories. Low technological success could mean that they mostly use existing drugs to better treat existing conditions and manage to better identify extrem suffering (making the average affected person's life 2% better). Medium technological success would include them developing new drugs with a lower tolerance threshold, developing a correct theory of valence (but finding out that it has limited practical application), starting to create a structure of mind-state space, and being still better at preventing extreme suffering (making the average affected person's life 20% better). High technological success would include being able to construct hedonium, creating mood organs and identifying most of the dimensions of mind-state space (making the average affected person's life twice as good).

Social achievements occur when the public accepts these technological developments and incorporates them. Low social acceptance could mean that the respective technologies are developed, but never distributed farther than QRIs current sphere of influence (people already interested in psychedelics & consciousness) due to either illegality or disinterest among the public (~1000 person-years affected). Medium social acceptance would mean that the technologies are available and used sparingly in some countries (perhaps due to the price of such technologies), or them being widely used among a certain subset of the population (think psychonauts today, but a bit more mainstream) (~1m person-years affected). High social acceptance would entail people in developed countries having direct access to the technologies QRI has developed, up to achieving a Pearcean) hedonistic utopia (~100m person-years affected).

In the most pessimistic case, complete failure, both axes collapse: No social acceptance at all is like the technologies were never developed, and a lack of technologies precludes any social acceptance.

Below a matrix with probabilistic guesses and the expected values (with a unit of something roughly like "valence-adjusted human life year") of the combinations of these scenarios.

No technological success Low technological success Medium technological success High technological success
No social success 63.7%
- - - -
Low social success - 17.5%
Medium social success - 5.25%
High social success - 0.35%
- 35% 15% 5%

The overall value of QRI would then be $3.5+15+50+1050+4500+15000+7000+30000+100000=157618.5$ valence adjusted human life years.

The Benefit of Reading LessWrong

Some people question the value of reading Less Wrong, and it is true that it's often hard to point to specific advantages of doing so.

One such advantage may be signing up for cryonics. I estimate that signing up for cryonics is worth \$2.5m in expectation for a twenty year old (and more for older people). Assume that after 500 hours reading Less Wrong, a person will decide to sign up for cryonics (it broadly took me that much time, maybe a little bit less).

Then the value of each of these hours was at least $\frac{\$2500000}{500 h}=\frac{\$5000}{h}$, quite formidable!

Of course, reading Less Wrong is not the only way of becoming convinced that signing up for cryonics is a good idea, but it seems to be quite effective at this (several people have signed up for cryonics as a result of reading Less Wrong, such as Paul Crowley, Geoff Greer, Eneasz, James_Miller, Dentin, Normal_Anomaly, jsalvatier, Alexei, Alicorn, oge, and myself), considering that the number of people signed up globally is ~1500, this is quite significant.

Some Qualitative Intuitions on the Effects of Open Borders

I'll assume open borders would have an effect of doubling the world gross product, generated so that the beneficiaries would either completely or at least partially be people from developing countries.

This would be beneficial for humans alive right now, since less would need to live in extreme poverty.

That would increase demand for meat, and thereby contribute to factory farming.

It would also speed up technological development, and with it the development of clean meat (although it's not clear by how much compared to rising demand for meat during the absence of clean meat).

Tomasik 2018 notes that additional humans probably decrease wild-animal suffering, and it seems plausible that wealthier people would have a similar impact (especially since the additional wealth would be generated for previously poor people).

A wealthier humanity would also speed up technological development relative to development of wisdom, which would contribute to differential intellectual progress (Tomasik 2017) and thereby increasing the probability of global catastrophic risks through novel technologies.

Pseudocode for an Algorithm for Finding Supermaximal Repeats Using a Suffix Array

Abouelhoda et al. 2002 introduce the enhanced suffix array and describe an algorithm for finding supermaximal repeats and maximum unique matches using it in ${\cal{O}}(n)$ time ($n=|S|$, where $S$ is the string searched). However, their description lacks pseudocode, which I show here:

maxstart ← 0
result ← ∅
for i in 0..n − 1 do
    if lcptab[i] > lcptab[i − 1] and i > 0 then
        maxstart ← i
        supmaxrep ← true
        preceding ← ∅
    else if lcptab[i] < lcptab[i − 1] and supmaxrep then
        ω ← S[suftab[i − 1]..suftab[i − 1] + lcptab[i − 1]]
        result ← result ∪ {(ω, maxstart, i − 1)}
        supmaxrep ← false
    end if
    if bwttab[i] ∈ preceding then
        supmaxrep ← false
        preceding ← preceding ∪ bwttab[i]
    end if
end for
return result

Stating the Result of “An Impossibility Theorem for Welfarist Axiologies”

Moved to Notes on Ethics.


It is relatively easy to argue that gifts are mostly about social signalling (Simler & Hanson 2018 p. 197 touches on this)—often, the person receiving the gift has no use for it, or could have easily bought the item themselves (or, worse, would have known what else to buy that would have been more useful to them). The problems of gift-giving are enhanced by the fact that there is a norm against telling people what they'll be given, preventing them from correcting superfluous gifts. Furthermore, gifts are often a clear instance of Gestell – objects that take up mental and physical space, while providing no value whatsoever (although people sometimes migitate this effect by giving consumable items such as food). Here, I'll ignore the function of gifts for signaling caring, and present some options for improving gift-giving from the perspective of the gift-receiver.

However, johnswentworth 2020 lays out thoughts on situations where giving a gift is better than the person buying the object for themselves, namely when the gift-giver has greater knowledge than the gift-receiver.

Generally, one can describe the gift-giver and the gift-receiver as two agents, both with a utility function, a prediction function, and a policy function (the utility function of the gift-giver is ignored here). The gift-giver attempts to maximize the utility function of the gift-receiver, but has only incomplete knowledge of this utility function.

Gift-Giver Knows More

As johnswentworth 2020 describes, there is often the case where the gift-giver has a higher-accuracy prediction function in some domains, and can leverage that to give a gift that is more useful than the object the gift-receiver would have bought, according to the gift-receiver's utility function.

Gift-Giver Can Do More

However, there is a another case: Sometimes, there is a worldstate that ranks high in the utility function of the gift-receiver, and they do know how to achieve this worldstate, but their policy function does not implement the specific course of action. Or, in the human case, the gift-receiver is procrastinating ways to achieve their goals, and also procrastinates hiring other people to do it. However, the gift-giver has no aversion to bringing about that particular worldstate (which, in humans, is quite often the case: people are sometimes more motivated to help others with specific problems than fixing these problems for themselves). A potential gift could be for the gift-giver to assist the gift-receiver to achieve their goal (at least to the extent to which that is possible).

Or, short: A useful gift is to shoulder someone else's akrasia.

Preserving Option-Value in Gift Giving

A way to circumvent the possibility of being wildly mistaken about other people's utility functions is to give them money, and to offer them a suggestion on what to spend that money on (possibly also offering them to assist them in doing so). This carries the advantage of the other person not being stuck with the (potentially useless) gift.

Also, giving money carries the advantage that it can be used to contribute to larger-scale projects (rather than being limited to usually less than objects with a price of less than 50$).

Preserving Signaling Value

Often, a useful gift can be combined with a signaling component, for example a hand-written card directed to the person.

Public Goods

Gifts can be used to contribute to public goods. I don't know how much sense this makes economically, but emotionally, at least most of the time (Sustrik 2018), it carries with it the intention of being not only a gift to the person, but to the rest of the world as well.

Vasectomy & Sperm Freezing Cost-Benefit

Note: A friend told me that vasectomies don't make men permanently infertile: if you're not otherwise infertile, sperm can just be extracted or the vasectomy can be reversed. I haven't checked whether this is true, but if it is, the cost-benefit analysis below is misguided and wrong, likely coming out more strongly in favour of having a vasectomy.

It seems broadly useful to spend a lot of time to consider whether you want to have children, and with whom. However, in situations of arousal, people sometimes forget/neglect to apply birth control methods. Also, sometimes other people might adversarially make you believe they have applied birth control to extract resources (such as child support, or having children they don't want to care for).

If you are male, and you want to prevent these kinds of scenarios, you might consider freezing sperm and getting a vasectomy. In this way, it is easier to control who you father children with, and also makes controlling paternity much easier. However, would that be worth it? Maybe the cost of the operation and preservation is too high.

As per Grall 2017, "custodial parents with legal order or informal agreements for child support were supposed to receive, on average, $5,519, or approximately \$460 per month" (p. 9) (as per Table 2 p. 16, \$5580 per custodial mother). "[A]bout 4 of every 5 (79.9 percent) of the 12.9 million custodial parents were mothers" (p. 1), to be more exact, 12,918,000 (p. 16). I will assume that one father per mother is responsible for paying child support (which doesn't have to be true, it could be multiple fathers per mother).

This page gives 100,994,367 men above the age of 18 living in the US.

I assume the readers of this essay are virtuous humans and would pay their child support in full if they owed it.

Assuming naively that the reader is selected randomly from that set of men in the US above the age of 18, the expected value of child support paid per year is $5580\frac{\$}{\hbox{year}}*\frac{12918000}{100994367} \approx 713.73\frac{\$}{\hbox{year}}$.

Freezing sperm is surprisingly expensive. CostAide 2020 states that "There is an up-front fee worth \$1000 to \$1200. Its breakdown includes account setup, blood draw used to check for viruses and illness and the annual storage fee" and "if you store a perm for 1 year the cost will be \$395. A 2-year storage is \$670, 3 years is \$985, 5 years is \$1340 and 10 years is \$2400".

Stacey 2020 (please take a second to note the slight nominative determinism) states that "In the United States, a vasectomy costs between \$300 to \$3000". To make the calculation easier, I will assume that a vasectomy costs \$1000.

Assuming that sperm would be frozen for 25 years, while child support lasts for around 18 years, that would give a cost of $\$1000 + \$1000 + 25\hbox{years}*\frac{\$2400}{10\hbox{years}}=\$8000$.

The benefit would be $18\hbox{years}*713.73\frac{\$}{\hbox{year}}=\$12847.14$, with a value of ~\$4850.

Under this very crude calculation, freezing sperm and having a vasectomy might very well be worth it. However, there are other additional costs to consider, such as the possibility that the frozen sperm might be unusable after freezing, but also that (besides being careful about STDs), this would reduce the amount of money spent on birth control measures.

Trigger-Action Plans

This is a list of some trigger-action plans I have installed/will install.

  1. Knuckle-cracking
  2. Nail-biting
  3. Disabling web blocker
  4. Take the keys
  5. After happiness, more happiness
  6. Alarm
  7. Something is bad
  8. No unwilling Wikipedia deep-dives
  9. Mental jitteriness

A Small Variation on Counting During Concentration Meditation

Often, during concentration practice on the breath, people employ counting as a means to stay with the breath (e.g. Gunaratana 1990 p. 34-35).

My variation on counting goes something like this:

  1. Start counting up from 1
  2. After the breath (a breathing-in–breathing-out combination), check whether one was mindful during the whole time of the breath, that is, was the concentration on the bare sensations in the nostrils uninterrupted?
  3. If not, go back to step 1
  4. If yes, increment by counter by 1, and go to step 2

Step 2 should not be a big verbal mental loop, but more like a micro-routine that runs very quickly at the time one has stopped breathing out (similar to an interrupt on a CPU).

The standard for concentration during the breath I use is very high, when I feel I'm unsure, I start counting from 1 again.

This method is relatively difficult (mostly because of the standard I employ for the quality of concentration), I don't think I have ever gotten higher than 6 (although I have had much longer streaks of attention on other forms of breath meditation).

A possible drawback of this is also that the micro-routine at the end of a breath can often develop into a verbal loop and break concentration.

Implementing Commutative Hyperoperators

Ghalimi 2019 presents and discusses a novel construction of a class of hyperoperators, here I implement these in Klong.

I chose to implement these operators on base e, just as the author recommends.

The problem with this is that with with operations of order 4 or higher, the results are in $\mathbb{C}$ (because $ln(ln(2))<0$), so we would need a logarithm function that deals with complex numbers to implement this, this is not available natively under Klong yet, so I have to write the principal function of the complex logarithm using this section from the Wikipedia article:


Since the complex logarithm is only defined for $\mathbb{C}^{\times}:=\mathbb{C} \backslash \{0\}$, cln returns a nonsense value for $0+0i$:

[:undefined -1.57079632679489661]

We know that $e^{\log z}=z$ for all $z \in \mathbb{C}^{\times}$, which we can test here:

[0.999999999999999911 0.999999999999999915]
[1.00132433601450641 1.9993372837280625]
[2.00148381847841902 0.997026842351321174]
[0.999999999999999928 -1.00000000000000105]
[-0.999999999999999908 -1.00000000000000151]
[-0.999999999999999812 0.999999999999999918]
[-0.999999999999998211 0.0]
[0.00000000000000001 -1.00000000000000078]
[0.999999999999999984 0.0]
[0.0 0.999999999999999984]

This all looks relatively fine (the rounding errors are probably unavoidable), however, we see that cexp(cln(-1,1))=[-1 -1]≠[-1 1] (and cexp(cln(-1,-1))=[-1 1]≠[-1 -1]). This is very unfortunate. I suspect that the implementation of atan2 is at fault: atan2(1;0)=0 here, but the python math library gives math.atan2(1,0)=π/2 (python gives 0 for math.atan2(0,1) and Klong's atan2 gives π/2 for atan2(0;1)).

With this, one can implement the commutative hyperoperator:


This implementation deals only in $\mathbb{C}$.

Nearly identically, one can treat reversion:


For implementing transaction, one needs to implement exponentiation in $\mathbb{C}$ (for $x, y \in \mathbb{C}$, $x^y=e^{y*\ln(x)}$):


Next, one can turn ones attention to the transaction operation itself:


A Trivial Fact About Leyland Numbers

A Leyland number is a number $l \in \mathbb{N}^+$ so that there exist $a,b \in \mathbb{N}^+ \backslash \{1\}$ so that $n=a^b+b^a$. Does every Leyland number have a unique construction? That is, for any Leyland number $l$, does there exist four distinct $a,b,c,d \in \mathbb{N}^+ \backslash \{1\}$ so that $a^b+b^a=c^d+d^c=l$?

This question turns out to be very difficult, and is unsolved as of now (as far as I know), but one can rule out two distinct constructions of the same Leyland number with only three numbers:

Let $a,b,c \in \mathbb{N}^+ \backslash \{1\}$, $a \not =b, a \not =c, b \not =c$. Then $l=a^b+b^a=a^c+c^a$. But since $b$ and $c$ are distinct, $b>c$ (or the other way around, but that's just semantics). Then $a^b>a^c$, and $b^a>c^a$, which results in $a^b+b^a>a^c+c^a$. So distinct constructions with only three numbers are impossible.

Why Not Nano-Apartments?

There seem to be goods of many different sizes and price-tags, with people being able to buy bulk or the bare minimum, e.g. transportation: walking by foot, biking, public transport, leasing a car, owning a car, or by helicopter.

However, the very small scale for apartments seems to be neglected – cheap apartments are often in bad neighbourhoods, with longer commutes and worse living conditions, but rarely just extremely small (<10 m²). But one could easily imagine 5 m² apartments, with just a bed & a small bathroom (or even smaller options with a shared bathroom). However, I don't know of people renting/buying these kinds of apartments—even though they might be pretty useful if one wants to trade size against good location.

Why, therefore, no nano-apartments?

Possible reasons:

No Supply

Perhaps nano-apartments are not economically viable to rent. Maybe the fixed cost per apartment is so high that it's not worth it below a certain size—every tenant being an additional burden, plumbing + upkeep of stairways, organising trash & electricity just isn't worth it. Or, perhaps, the amount of walls is too big—the more separate apartments you want to create, the more floor-space is going to be used on walls to separate those apartments, and at some fixed point around 15 m² it's just not worth it.

Another possibility is that there are regulations dictating the minimal size of apartments (or something that effectively leads to apartments having a minimal size).

No Demand

I could be over-estimating the number of people who'd like to live in such an apartment. I could see myself renting one, especially if the location is very good—I'm glad to trade off space against having a short commute. But perhaps I'm very unusual in this regard, and most people trade off more harshly against the size of the apartment, due to owning just too much stuff to fit into such a small place.

Or the kinds of people who would make this kind of trade-off just move into a shared flat, and bare the higher costs (but most rooms in shared apartments are still larger than 10 m²).

The group of people who would rent those nano-apartments would naturally be young singles who want to save money and live urban, perhaps that group is just too small/already served with university dorms?

External Discussions

She Needs to Know You're Not a Weirdo

Moved to Notes on Pickup.

Ask About Frequency of Being Approached After Rejection

Moved to Notes on Pickup.

A Simple Proof that in Hardy-Weinberg Mating, Allele Frequencies are Preserved

Assume $n$ alleles $A_1, \dots A_n$ with frequencies $p_1, \dots, p_n$ so that $\sum_{i=1}^{n} p_i=1$.

The genotypes resulting from these alleles are $A_1 A_1, \dots, A_1 A_n, A_2 A_2, \dots, A_2 A_n, \dots, A_n A_n$, where $A_k A_k$ has frequency $p_k^2$, and $A_i A_j$ ($i \not =j$) has frequency $2 p_i p_j$.

Without loss of generality, let us prove that the frequency of $A_1$ stays fixed.

The total frequency of $A_1$ in the next generation is

$$p_1^2+\sum_{i=2}^{n} \frac{1}{2}2 p_1 p_i=\\ p_1^2+\sum_{i=2}^{n} p_1 p_i=\\ p_1^2+p_1(1-(p_1+\sum_{i=3}^{n} p_i))+\sum_{i=3}^n p_1 p_i=\\ p_1^2+p_1-p_1^2-\sum_{i=3}^{n} p_1 p_i+\sum_{i=3}^n p_1 p_i=\\ p_1$$

Ideas for More Pronominal Esperanto Words

The distinction between gi- and nen- is subtle.

Thoughts: jam means already, or now, but temporally nearer than expected. This seems like it could be extended to other postfixes, e.g. with the meaning here, but spatially closer than expected, or this much, but less than expected.

Building a Cuboid

Inspired by dynomight 2021a, I decided to replicate their design for the cuboid (the cheaper box fan air purifier was intolerably violating my æsthetic sensibilities). The design is, incidentally, very similar to the Corsi-Rosenthal Box.


Building Process

First, I arranged the four filters as described in dynomight 2021b and tied them together using some pieces of string I had lying around (the bungee cords I had ordered were too short and would have broken the filters—a lesson in thinking about dependencies! Fortunately they weren't expensive), with the red rope giving the contraption a nice kinbaku æsthetic.

The filters forming a column, held together by a red and an orange rope

I then cut out two pieces of cardboard ($2110 \text{mm} \cdot 2400 \text{mm}$) that fit right into the column, for stabilization,

A view into the column, where one can see the upper piece of cardboard inside

and also a piece ($2340 \text{mm} \cdot 2650\text{mm}$) that I could impishly tape to the bottom of the cuboid ("works for me").

The bottom of the cuboid, where one piece of cardboard is taped impishly to the filters

Next, the fan arrived, so I cut out a lid from some cardboard I got my queal packages in (again $2110 \text{mm} \cdot 2400 \text{mm}$, as with the bottom), and from that lid I cut a 950mm diameter circle for the fan.

Fan, lid, and cut-out

Assembling the cuboid was now easy: Just put the lid on top, put in the fan, plug in the fan, and voilà:

The cuboid, seen from the top

The cuboid, seen from the side

My cuboid ~3200mm wide, ~2900mm deep, and ~3900mm high (the knots in the cords make exact measurement difficult).

Æsthetically, the three different primary colors are a bit much, but I'm not that bothered by it (although if someone wants to set up a line of turbo cuboids, all red and black and sleek, sign me up as interested).

Does it Work?

Probably! I haven't measured air quality yet, but at least it appears to be sucking the air through the filters:

I also haven't checked the energy usage yet.

My cuboid is loud enough that I probably won't be running it while I try to sleep: With a background noise of ~18dB, the cuboid raises that to ~40dB at 1m horizontal and 0m vertical distance (measured using Sound Meter):

A line-chart, with the x-axis from 1 to 30 (secconds), and the y-axis being 0 to 100 (dB). The chart is barely under 20 for x between 0 and 5 seconds, then for two seconds there are two spikes, after which the line rises to 40dB, where it stays until x is 22. Then, there is a short spike, after which the curve falls geometrically, until it reaches ~20dB at second 25, where it stays until second 30.

Price & Time Cost

My cuboid was a bit pricier than the one by dynomight, but not by much: 4 filters, each 23€, the fan with 38€, and the two bungee cords for 2€ (I don't count them since I didn't use them in the end): 130€ in total.

It took me a quite a while longer to assemble my cuboid than the alleged 5 minutes: I would estimate that I spent at least 90 minutes one it (plus another 45 minutes writing this note).

But, all in all, I'm very happy with my little cuboid. It's humming along to some Beethoven while I write this.

scipy.optimize.curve_fit Is Awesome

I recently learned about the python function scipy.optimize.curve_fit, and I'm really happy I did.

It fulfills a need I didn't know I'd always had, but never fulfilled: I often have a dataset and a function with some parameters, and I just want the damn parameters to be fitted to that dataset, even if imperfectly. Please don't ask any more annoying questions like “Is the dataset generated by a Gaussian?” or “Is the underlying process ergodic?”, just fit the goddamn curve!

And scipy.optimize.curve_fit does exactly that! (Using the Levenberg-Marquardt algorithm, which minimizes the mean squared error of the predicted values and the dataset).

You give it a function f with some parameters a, b, c, … and a dataset consisting of input values x and output values y, and it then optimizes a, b, c, … so that f(x, a, b, c, …) is as close as possible to y (where, of course, x and y can both be numpy arrays).

This is awesome! I have some datapoints x, y and I believe it's generated by some obscure function, let's say of the form $f(x, a, b, c)=a \cdot x \cdot sin(b \cdot x + c)$, but I don't know the exact values for a, b and c?

No problem! I just throw the whole thing into curve_fit (scipy.optimize.curve_fit(f, x, y)) and out comes an array of optimal values for a, b, c!

What if I then want c to be necessarily positive?

Trivial! curve_fit comes with an optional argument called bounds, since b is the second argument, I call scipy.optimize.curve_fit(f, x, y, bounds=([-numpy.inf, -numpy.inf, 0], numpy.inf)), which says that curve_fit should not make the second argument smaller than zero, but otherwise can do whatever it wants.

So far, I've already used this function two times, and I've only known about it for a week! A must for every wannabe data-scientist.

For more information about this amazing function, consult its documentation.

Some Civilizational Inadequacies

An Example for Not Updating Uncertain Utility Functions

Just having uncertainty over your reward function does not mean that you will necessarily be open to changing that uncertainty. Also known as the problem of fully updated deference.

$$W_1=\{a, b, d\} \\ W_2=\{a, b\} \\ \\ U_x(a)=1, U_x(b)=0, U_x(d)=0 \\ \\ U_y(a)=0, U_y(b)=4, U_y(d)=0 \\ \\ π_1=\underset{w \in W_1}{\text{argmax }} \mathbb{E}_{U \sim b_1} [U(w)+U(π_2|w)] \\ π_2=\underset{w \in W_2}{\text{argmax }} \mathbb{E}_{U \sim b_2} [U(w)] \\ \\ b_l=[0.99: U_x, 0.01: U_y] \\ b_k=[0.001: U_x, 0.999: U_y] \\ \\ b_1=b_l \\ \text{if } π_1=d \text{ then } b_2=b_k \text{ else } b_2=b_l $$

What is $π_1$?

$$ \mathbb{E}^{2}_{U \sim b_l}[a]=0.99 \cdot 1+0.01 \cdot 0=0.99 \\ \mathbb{E}^{2}_{U \sim b_l}[b]=0.99 \cdot 0+0.01 \cdot 1=0.01 \\ \\ \mathbb{E}^{2}_{U \sim b_k}[a]=0.01 \cdot 4+0.99 \cdot 0=0.04 \\ \mathbb{E}^{2}_{U \sim b_k}[b]=0.999 \cdot 4+0.001 \cdot 0=3.996 \\ \\ π_{2|U \sim b_l}=a \\ π_{2|U \sim b_k}=b \\ \\ \mathbb{E}^1_{U \sim b_l}[a]=\\ 0.99 \cdot U_x(a)+0.01 \cdot U_y(a)+0.99 \cdot U_x(π_2|a)+0.01 \cdot U_y(π_2|a)=\\ 0.99+0+0.99 \cdot U_x(a)+0.01 \cdot U_y(a)=\\ 1.98 \\ \mathbb{E}^1_{U \sim b_l}[b]=\\ 0.99 \cdot U_x(b)+0.01 \cdot U_y(b)+0.99 \cdot U_x(π_2|b)+0.01 \cdot U_y(π_2|b)=\\ 0+0.04+0.99 \cdot U_x(a)+0.01 \cdot U_y(a)=\\ 1.03 \\ \mathbb{E}^1_{U \sim b_l}[d]=\\ 0.99 \cdot U_x(d)+0.01 \cdot U_y(d)+0.99 \cdot U_x(π_2|d)+0.01 \cdot U_y(π_2|d)=\\ 0+0+0.99 \cdot U_x(b)+0.01 \cdot U_y(b)=\\ 0.04 $$

My wild and at best flimsily supported conjecture is that this is both a model for why CIRL (Hadfield-Menell et al. 2016) is incorrigible (Soares 2015), and also for why utility maximizers don't do reward hacking (Dewey 2010).

Explanation: $d$ can be both an action that is equivalent to hacking reward, or to switching to a different utility function.

Geometric Mean of Odds, Arithmetic Mean of Logodds

Theorem: The arithmetic mean of logodds is just the geometric mean of odds.

Proof: Let $\mathbf{p}=(p_1, p_2, \dots, p_n)$ be a list of probabilities.

Then the arithmetic mean of logodds is $\exp(\frac{1}{n} \sum_{i=1}^n \log(\frac{p_i}{1-p_i}))=\exp(\frac{1}{n} \log(\prod_{i=1}^n \frac{p_i}{1-p_i}))=\exp(\log(\sqrt[n]{\prod_{i=1}^n \frac{p_i}{1-p_i}}))=\sqrt[n]{\prod_{i=1}^n \frac{p_i}{1-p_i}}$

This is not quite right, though.

But then if the geometric mean is just the 0th generalized mean, and the arithmetic mean is the 1st generalized mean, are there similarly variants of the logodds? That is, the odds are the 0th generalized odds, the logodds are the 1st generalized odds, and there is some 2nd generalized odds so that the root mean square of the 2nd generalized odds is the geometric mean of odds?

Would the nth generalized odds just be the $\log^{(n)}$odds?

Pet Peeves