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Chapter 1 
 

 

The MU-puzzle 
 

 

 

Formal Systems 
 

ONE OF THE most central notions in this book is that of a formal system. The type of 

formal system I use was invented by the American logician Emil Post in the 1920's, and 

is often called a "Post production system". This Chapter introduces you to a formal 

system and moreover, it is my hope that you will want to explore this formal system at 

least a little; so to provoke your curiosity, I have posed a little puzzle. 

"Can you produce MU?" is the puzzle. To begin with, you will be supplied with a 

string (which means a string of letters).* Not to keep you in suspense, that string will be 

MI. Then you will be told some rules, with which you can change one string into another. 

If one of those rules is applicable at some point, and you want to use it, you may, but-

there is nothing that will dictate which rule you should use, in case there are several 

applicable rules. That is left up to you-and of course, that is where playing the game of 

any formal system can become something of an art. The major point, which almost 

doesn't need stating, is that you must not do anything which is outside the rules. We 

might call this restriction the "Requirement of Formality". In the present Chapter, it 

probably won't need to be stressed at all. Strange though it may sound, though, I predict 

that when you play around with some of the formal systems of Chapters to come, you 

will find yourself violating the Requirement of Formality over and over again, unless you 

have worked with formal systems before. 

The first thing to say about our formal system-the MIU-system-is that it utilizes 

only three letters of the alphabet: M, I, U. That means that the only strings of the MIU-

system are strings which are composed of those three letters. Below are some strings of 

the MIU-system: 

 

MU 

UIM 

MUUMUU 

UIIUMIUUIMUIIUMIUUIMUIIU 

 
* In this book, we shall employ the following conventions when we refer to strings. When the 

string is in the same typeface as the text, then it will be enclosed in single or double quotes. 

Punctuation which belongs to the sentence and not to the string under discussion will go outside 

of the quotes, as logic dictates. For example, the first letter of this sentence is 'F', while the first 

letter of 'this ‘sentence’.is 't'. When the string is in Quadrata Roman, however, quotes will 

usually be left off, unless clarity demands them. For example, the first letter of Quadrata is Q. 
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But although all of these are legitimate strings, they are not strings which are "in your 

possession". In fact, the only string in your possession so far is MI. Only by using the 

rules, about to be introduced, can you enlarge your private collection. Here is the first 

rule: 

 

RULE I: If you possess a string whose last letter is I, you can add on a U at the end. 

 

By the way, if up to this point you had not guessed it, a fact about the meaning of "string" 

is that the letters are in a fixed order. For example, MI and IM are two different strings. 

A string of symbols is not just a "bag" of symbols, in which the order doesn't make any 

difference. 

Here is the second rule: 

 

RULE II: Suppose you have Mx. Then you may add Mxx to your collection. 

 

What I mean by this is shown below, in a few examples. 

 

From MIU, you may get MIUIU.  

From MUM, you may get MUMUM.  

From MU, you may get MUU. 

 

So the letter `x' in the rule simply stands for any string; but once you have decided which 

string it stands for, you have to stick with your choice (until you use the rule again, at 

which point you may make a new choice). Notice the third example above. It shows how, 

once you possess MU, you can add another string to your collection; but you have to get 

MU first! I want to add one last comment about the letter `x': it is not part of the formal 

system in the same way as the three letters `M', `I', and `U' are. It is useful for us, 

though, to have some way to talk in general about strings of the system, symbolically-and 

that is the function of the `x': to stand for an arbitrary string. If you ever add a string 

containing an 'x' to your "collection", you have done something wrong, because strings of 

the MIU-system never contain "x" “s”! 

Here is the third rule: 

 

RULE III: If III occurs in one of the strings in your collection, you may make a new 

string with U in place of III. 

 

Examples: 

 

From UMIIIMU, you could make UMUMU. 

From MII11, you could make MIU (also MUI). 

From IIMII, you can't get anywhere using this rule. 

(The three I's have to be consecutive.)  

From MIII, make MU. 

 

Don't, under any circumstances, think you can run this rule backwards, as in the 

following example: 
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From MU, make MIII            <- This is wrong. 

 

Rules are one-way. 

 Here is the final rule. 

 

RULE IV: If UU occurs inside one of your strings, you can drop it. 

 

From UUU, get U. 

From MUUUIII, get MUIII. 

 

There you have it. Now you may begin trying to make MU. Don't worry you don't get it. 

Just try it out a bit-the main thing is for you to get the flavor of this MU-puzzle. Have 

fun. 

 

Theorems, Axioms, Rules 
 

The answer to the MU-puzzle appears later in the book. For now, what important is not 

finding the answer, but looking for it. You probably hay made some attempts to produce 

MU. In so doing, you have built up your own private collection of strings. Such strings, 

producible by the rules, are called theorems. The term "theorem" has, of course, a 

common usage mathematics which is quite different from this one. It means some 

statement in ordinary language which has been proven to be true by a rigorous argument, 

such as Zeno's Theorem about the "unexistence" of motion, c Euclid's Theorem about the 

infinitude of primes. But in formal system theorems need not be thought of as statements-

they are merely strings c symbols. And instead of being proven, theorems are merely 

produced, as if F machine, according to certain typographical rules. To emphasize this 

important distinction in meanings for the word "theorem", I will adopt the following 

convention in this book: when "theorem" is capitalized, its meaning will be the everyday 

one-a Theorem is a statement in ordinary language which somebody once proved to be 

true by some sort of logic argument. When uncapitalized, "theorem" will have its 

technical meaning a string producible in some formal system. In these terms, the MU-

puzzle asks whether MU is a theorem of the MIU-system. 

 

I gave you a theorem for free at the beginning, namely MI. Such "free" theorem is called 

an axiom-the technical meaning again being qui different from the usual meaning. A 

formal system may have zero, or several, or even infinitely many axioms. Examples of all 

these types v appear in the book. 
 

Every formal system has symbol-shunting rules, such as the four rules of the MIU-

system. These rules are called either rules of production or rules of inference. I will use 

both terms. 
 

The last term which I wish to introduce at this point is derivation. Shown below is a 

derivation of the theorem MUIIU: 

 

(1) MI    axiom 

(2) MII    from (1) by rule II 
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(3) MIII    from (2) by rule II 

(4) MIIIIU   from (3) by rule I 

(5) MUIU   from (4) by rule III 

(6) MUIUUIU   from (5) by rule II 

(7) MUIIU   from (6) by rule IV 

 

A derivation of a theorem is an explicit, line-by-line demonstration of how to produce 

that theorem according to the rules of the formal system. The concept of derivation is 

modeled on that of proof, but a derivation is an austere cousin of a proof. It would sound 

strange to say that you had proven MUIIU, but it does not sound so strange to say you 

have derived MUIIU. 

 

Inside and Outside the System 
 

Most people go about the MU-puzzle by deriving a number of theorems, quite at random, 

just to see what kind of thing turns up. Pretty soon, they begin to notice some properties 

of the theorems they have made; that is where human intelligence enters the picture. For 

instance, it was probably not obvious to you that all theorems would begin with M, until 

you had tried a few. Then, the pattern emerged, and not only could you see the pattern, 

but you could understand it by looking at the rules, which have the property that they 

make each new theorem inherit its first letter from an earlier theorem; ultimately, then, all 

theorems' first letters can be traced back to the first letter of the sole axiom MI-and that is 

a proof that theorems of the MIU-system must all begin with M. 

There is something very significant about what has happened here. It shows one 

difference between people and machines. It would certainly be possible-in fact it would 

be very easy-to program a computer to generate theorem after theorem of the MIU-

system; and we could include in the program a command to stop only upon generating U. 

You now know that a computer so programmed would never stop. And this does not 

amaze you. But what if you asked a friend to try to generate U? It would not surprise you 

if he came back after a while, complaining that he can't get rid of the initial M, and 

therefore it is a wild goose chase. Even if a person is not very bright, he still cannot help 

making some observations about what he is doing, and these observations give him good 

insight into the task-insight which the computer program, as we have described it, lacks. 

Now let me be very explicit about what I meant by saying this shows a difference 

between people and machines. I meant that it is possible to program a machine to do a 

routine task in such a way that the machine will never notice even the most obvious facts 

about what it is doing; but it is inherent in human consciousness to notice some facts 

about the things one is doing. But you knew this all along. If you punch "1" into an 

adding machine, and then add 1 to it, and then add 1 again, and again, and again, and 

continue doing so for hours and hours, the machine will never learn to anticipate you, and 

do it itself, although any person would pick up the 



 

The MU-puzzle 45

pick up the idea, no matter how much or how well it is driven, that it i supposed to avoid 

other cars and obstacles on the road; and it will never learn even the most frequently 

traveled routes of its owner. 

The difference, then, is that it is possible for a machine to act unobservant; it is 

impossible for a human to act unobservant. Notice I am not saying that all machines are 

necessarily incapable of making sophisticated observations; just that some machines are. 

Nor am I saying that all people are always making sophisticated observations; people, in 

fact, are often very unobservant. But machines can be made to be totally unobservant; 

any people cannot. And in fact, most machines made so far are pretty close ti being 

totally unobservant. Probably for this reason, the property of being; unobservant seems to 

be the characteristic feature of machines, to most people. For example, if somebody says 

that some task is "mechanical", i does not mean that people are incapable of doing the 

task; it implies though, that only a machine could do it over and over without eve 

complaining, or feeling bored. 

 

Jumping out of the System 
 

It is an inherent property of intelligence that it can jump out of the tas which it is 

performing, and survey what it has done; it is always looking for and often finding, 

patterns. Now I said that an intelligence can jump out o its task, but that does not mean 

that it always will. However, a little prompting will often suffice. For example, a human 

being who is reading a boo may grow sleepy. Instead of continuing to read until the book 

is finished he is just as likely to put the book aside and turn off the light. He ha stepped 

"out of the system" and yet it seems the most natural thing in the world to us. Or, suppose 

person A is watching television when person B comes in the room, and shows evident 

displeasure with the situation Person A may think he understands the problem, and try to 

remedy it b exiting the present system (that television program), and flipping the channel 

knob, looking for a better show. Person B may have a more radio concept of what it is to 

"exit the system"-namely to turn the television oft Of course, there are cases where only a 

rare individual will have the vision to perceive a system which governs many peoples 

lives, a system which ha never before even been recognized as a system; then such people 

often devote their lives to convincing other people that the system really is there and that 

it ought to be exited from! 

How well have computers been taught to jump out of the system? I w cite one 

example which surprised some observers. In a computer chess: tournament not long ago 

in Canada, one program-the weakest of all the competing ones-had the unusual feature of 

quitting long before the game was over. It was not a very good chess player, but it at least 

had the redeeming quality of being able to spot a hopeless position, and to resign then 

and there, instead of waiting for the other program to go through the 
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boring ritual of checkmating. Although it lost every game it played, it did it in style. A lot 

of local chess experts were impressed. Thus, if you define "the system" as "making 

moves in a chess game", it is clear that this program had a sophisticated, preprogrammed 

ability to exit from the system. On the other hand, if you think of "the system" as being 

"whatever the computer had been programmed to do", then there is no doubt that the 

computer had no ability whatsoever to exit from that system. 

It is very important when studying formal systems to distinguish working within 

the system from making statements or observations about the system. I assume that you 

began the MU-puzzle, as do most people, by working within the system; and that you 

then gradually started getting anxious, and this anxiety finally built up to the point where 

without any need for further consideration, you exited from the system, trying to take 

stock of what you had produced, and wondering why it was that you had not succeeded in 

producing MU. Perhaps you found a reason why you could not produce MU; that is 

thinking about the system. Perhaps you produced MIU somewhere along the way; that is 

working within the system. Now I do not want to make it sound as if the two modes are 

entirely incompatible; I am sure that every human being is capable to some extent of 

working inside a system and simultaneously thinking about what he is doing. Actually, in 

human affairs, it is often next to impossible to break things neatly up into "inside the 

system" and "outside the system"; life is composed of so many interlocking and 

interwoven and often inconsistent "systems" that it may seem simplistic to think of things 

in those terms. But it is often important to formulate simple ideas very clearly so that one 

can use them as models in thinking about more complex ideas. And that is why I am 

showing you formal systems; and it is about time we went back to discussing the MIU-

system. 

 

 

M-Mode, I-Mode, U-Mode 
 

The MU-puzzle was stated in such a way that it encouraged some amount of exploration 

within the MIU-system-deriving theorems. But it was also stated in a way so as not to 

imply that staying inside the system would necessarily yield fruit. Therefore it 

encouraged some oscillation between the two modes of work. One way to separate these 

two modes would be to have two sheets of paper; on one sheet, you work "in your 

capacity as a machine", thus filling it with nothing but M's, I's, and U's; on the second 

sheet, you work "in your capacity as a thinking being", and are allowed to do whatever 

your intelligence suggests-which might involve using English, sketching ideas, working 

backwards, using shorthand (such as the letter `x'), compressing several steps into one, 

modifying the rules of the system to see what that gives, or whatever else you might 

dream up. One thing you might do is notice that the numbers 3 and 2 play an important 

role, since I's are gotten rid of in three's, and U's in two's-and doubling of length (except 

for the M) is allowed by rule II. So the second sheet might 
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also have some figuring on it. We will occasionally refer back to these two modes of 

dealing with a formal system, and we will call them the Mechanic mode (M-mode) and 

the Intelligent mode (I-mode). To round out our mode with one for each letter of the 

MIU-system, I will also mention a fin mode-the Un-mode (U-mode), which is the Zen 

way of approaching thing. More about this in a few Chapters. 

 

 

Decision Procedures 
 

An observation about this puzzle is that it involves rules of two opposite tendencies-the 

lengthening rules and the shortening rules. Two rules (I and II) allow you to increase the 

size of strings (but only in very rigid, pr scribed ways, of course); and two others allow 

you to shrink strings somewhat (again in very rigid ways). There seems to be an endless 

variety to the order in which these different types of rules might be applied, and this gives 

hope that one way or another, MU could be produced. It might involve lengthening the 

string to some gigantic size, and then extracting piece after piece until only two symbols 

are left; or, worse yet, it might involve successive stages of lengthening and then 

shortening and then lengthening and then shortening, and so on. But there is no guarantee 

it. As a matter of fact, we already observed that U cannot be produced at all and it will 

make no difference if you lengthen and shorten till kingdom come. 

Still, the case of U and the case of MU seem quite different. It is by very 

superficial feature of U that we recognize the impossibility of producing it: it doesn't 

begin with an M (whereas all theorems must). It is very convenient to have such a simple 

way to detect nontheorems. However who says that that test will detect all nontheorems? 

There may be lots strings which begin with M but are not producible. Maybe MU is one 

of them. That would mean that the "first-letter test" is of limited usefulness able only to 

detect a portion of the nontheorems, but missing others. B there remains the possibility of 

some more elaborate test which discriminates perfectly between those strings which can 

be produced by the rules and those which cannot. Here we have to face the question, 

"What do mean by a test?" It may not be obvious why that question makes sense, of 

important, in this context. But I will give an example of a "test" which somehow seems to 

violate the spirit of the word. 

Imagine a genie who has all the time in the world, and who enjoys using it to 

produce theorems of the MIU-system, in a rather methodical way. Here, for instance, is a 

possible way the genie might go about it 

 

Step 1: Apply every applicable rule to the axiom MI. This yields two new theorems 

MIU, MII. 

Step 2: Apply every applicable rule to the theorems produced in step 1. This yields 

three new theorems: MIIU, MIUIU, MIIII.  
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Step 3: Apply every applicable rule to the theorems produced in step 2. This yields 

five new theorems: MIIIIU, MIIUIIU, MIUIUIUIU, MIIIIIIII, MUI. 

 

 

This method produces every single theorem sooner or later, because the rules are applied 

in every conceivable order. (See Fig. 11.) All of the lengthening-shortening alternations 

which we mentioned above eventually get carried out. However, it is not clear how long 

to wait for a given string 

 

 
 

FIGURE 11. A systematically constructed "tree" of all the theorems of the MIU-system. 

The N th level down contains those theorems whose derivations contain exactly N steps. 

The encircled numbers tell which rule was employed. Is MU anywhere in this tree? 

 

 

to appear on this list, since theorems are listed according to the shortness of their 

derivations. This is not a very useful order, if you are interested in a specific string (such 

as MU), and you don't even know if it has any derivation, much less how long that 

derivation might be. 

Now we state the proposed "theoremhood-test": 

 

Wait until the string in question is produced; when that happens, you know it 

is a theorem-and if it never happens, you know that it is not a theorem. 

 

This seems ridiculous, because it presupposes that we don't mind waiting around literally 

an infinite length of time for our answer. This gets to the crux of the matter of what 

should count as a "test". Of prime importance is a guarantee that we will get our answer 

in a finite length of time. If there is a test for theoremhood, a test which does always 

terminate in a finite 
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amount of time, then that test is called a decision procedure for the given formal system. 

When you have a decision procedure, then you have a very concrete 

characterization of the nature of all theorems in the system. Offhand, it might seem that 

the rules and axioms of the formal system provide no less complete a characterization of 

the theorems of the system than a decision procedure would. The tricky word here is 

"characterization". Certainly the rules of inference and the axioms of the MIU-system do 

characterize, implicitly, those strings that are theorems. Even more implicitly, they 

characterize those strings that are not theorems. But implicit characterization is not 

enough, for many purposes. If someone claims to have a characterization of all theorems, 

but it takes him infinitely long to deduce that some particular string is not a theorem, you 

would probably tend to say that there is something lacking in that characterization-it is 

not quite concrete enough. And that is why discovering that a decision procedure exists is 

a very important step. What the discovery means, in effect, is that you can perform a test 

for theoremhood of a string, and that, even if the test is complicated, it is guaranteed to 

terminate. In principle, the test is just as easy, just as mechanical, just as finite, just as full 

of certitude, as checking whether the first letter of the string is M. A decision procedure 

is a "litmus test" for theoremhood! 

Incidentally, one requirement on formal systems is that the set of axioms must be 

characterized by a decision procedure-there must be a litmus test for axiomhood. This 

ensures that there is no problem in getting off the ground at the beginning, at least. That 

is the difference between the set of axioms and the set of theorems: the former always has 

a decision procedure, but the latter may not. 

I am sure you will agree that when you looked at the MIU-system for the first 

time, you had to face this problem exactly. The lone axiom was known, the rules of 

inference were simple, so the theorems had been implicitly characterized-and yet it was 

still quite unclear what the consequences of that characterization were. In particular, it 

was still totally unclear whether MU is, or is not, a theorem. 
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FIGURE 12. Sky Castle, by M. C.: Escher (woodcut, 1928). 

 

 


