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Abstract
Autonomous AI systems’ programmed goals can
easily fall short of programmers’ intentions. Even
a machine intelligent enough to understand its de-
signers’ intentions would not necessarily act as in-
tended. We discuss early ideas on how one might
design smarter-than-human AI systems that can in-
ductively learn what to value from labeled training
data, and highlight questions about the construction
of systems that model and act upon their operators’
preferences.

1 Introduction
Standard texts in AI safety and ethics, such as Weld and Et-
zioni [1994] or Anderson and Anderson [2011], generally
focus on autonomous systems with reasoning abilities that are
complementary and not strictly superior to those of humans.
Relatively little attention is given to future AI systems that may
be “superintelligent” in the sense of Bostrom [2014], i.e., sys-
tems “much smarter than the best human brains in practically
every field, including scientific creativity, general wisdom, and
social skills.” Our discussion will place a greater focus on
methods and frameworks for designing robust and beneficial
smarter-than-human AI systems, bracketing questions about
whether such systems would have moral standing of their own.

Smarter-than-human AI systems are likely to introduce
a number of new safety challenges. First, bad behavior by
smarter-than-human systems can have larger and more last-
ing consequences; an antisocial adult is more dangerous than
an antisocial child, even if the adult is as physically weak
as a child. Whereas low-intelligence systems can be tested
and patched over many iterations, Bostrom argues that even
small errors in the first superintelligent systems could have
extinction-level consequences [Bostrom, 2014]. The possible
development of such systems raises the stakes for AI safety
work.

Second, systems that can strictly outperform humans cog-
nitively have less to gain from integrating into existing
economies and communities. Hall [2007] has argued:

The economic law of comparative advantage states
that cooperation between individuals of differing
capabilities remains mutually beneficial. [ . . . ] In

other words, even if AIs become much more produc-
tive than we are, it will remain to their advantage to
trade with us and to ours to trade with them.

As noted by Benson-Tilsen and Soares [forthcoming 2016],
however, rational trade presupposes that agents expect more
gains from trade than from coercion. Non-human species have
various “comparative advantages” over humans, but humans
generally exploit non-humans through force. Similar patterns
can be observed in the history of human war and conquest.
Whereas agents at similar capability levels have incentives to
compromise, collaborate, and trade, agents with strong power
advantages over others can have incentives to simply take what
they want.

The upshot of this is that engineering a functioning society
of powerful autonomous AI systems and humans requires that
those AI systems be prosocial. The point is an abstract one,
but it has important practical consequences: rational agents’
interests do not align automatically, particularly when they
have very different goals and capabilities.

Third, superhumanly creative and adaptive systems may
arrive at what Bostrom [2014, chap. 8] calls “perverse in-
stantiations” of their programmed goals. Wiener [1960] calls
this the “Sorcerer’s Apprentice” problem, after the fable of an
apprentice whose enchanted broom follows instructions’ letter
but not their spirit.

The novelty here is not that programs can exhibit incorrect
or counter-intuitive behavior, but that software agents smart
enough to understand natural language may still base their
decisions on misrepresentations of their programmers’ intent.
The idea of superintelligent agents monomaniacally pursuing
“dumb”-seeming goals may sound odd, but it follows from the
observation of Bostrom and Yudkowsky [2014, chap. 7] that
AI capabilities and goals are logically independent.1 Humans
can fully comprehend that their “designer” (evolution) had
a particular “goal” (reproduction) in mind for sex, without
thereby feeling compelled to forsake contraception. Instilling
one’s tastes or moral values into an heir isn’t impossible, but
it also doesn’t happen automatically.

Lastly, Bostrom [2014] point out that smarter-than-human
systems may become better than humans at moral reasoning.

1Bostrom’s “orthogonality thesis” can be treated as an application
of Hume’s [1739] observation that natural-language “is” and “ought”
claims are independent.



Without a systematic understanding of how perverse instantia-
tions differ from moral progress, how can we distinguish moral
genius in highly intelligent machines from moral depravity?

Given the potential long-term impact of advanced AI sys-
tems, it would be prudent to investigate whether early research
progress is possible on any of these fronts. In this paper we
give a preliminary, informal survey of several research direc-
tions that we think may help address the above four concerns,
beginning by arguing for indirect approaches to specifying
human values in AI agents. We describe a promising approach
to indirect value specification, value learning, and consider
still more indirect approaches based on modeling actual and
potential states of human operators.

2 Valuable Goals Cannot Be Directly
Specified

We argued above that highly capable autonomous systems
could have disastrous effects if their values are misspecified.
Still, this leaves open the possibility that specifying correct
values is easy, or (more plausibly) that it presents no special
difficulties over and above the challenge of building a smarter-
than-human AI system.

A number of researchers have voiced the intuition that some
simple programmed goal would suffice for making superintelli-
gent systems robustly beneficial. Hibbard [2001], for example,
suggested training a simple learning system to recognize posi-
tive human emotions from facial expressions, voice tones, and
body language. Hibbard then proposed that machines of much
greater capability—perhaps even superintelligent machines—
could be programmed to execute actions predicted to lead to
futures with as many “positive human emotions” as possible,
as evaluated by the original simple learning system.

This proposal has some intuitive appeal—wouldn’t such a
system always act to make humans happy?—until one con-
siders the Sorcerer’s Apprentice. We have a particular set
of associations in mind when we speak of “positive human
emotions,” but the simple learner would almost surely have
learned a different and simpler concept, such as “surface fea-
tures correlating with positive human emotions in the training
data.” This simpler concept almost surely does not have its
maximum at a point which Hibbard would consider to contain
lots of positive human emotions. The maximum is much more
likely to occur in (for example) scenarios that contain an enor-
mous number of tiny human-shaped animatronics acting out
positive human emotions. Thus, a powerful learning system
that takes actions according to how well the simple learner
would rank them is liable to spend time and resources creating
animatronics rather than spending time and resources making
humans happy. Indeed, Hibbard [2012] himself comes to the
conclusion that his proposal fails to exclude the possibility that
lifelike animatronic replicas of happy people could be counted
as exhibiting “positive emotions.”

As another example, Schmidhuber [2007] proposes that cre-
ativity, curiosity, and a desire for discovery and beauty can be
instilled by creating systems that maximize a different simple
measure: “create action sequences that extend the observa-
tion history and yield previously unknown / unpredictable but
quickly learnable algorithmic regularity or compressibility.”

However, while it is quite plausible that human creativity
and discovery are related to the act of compressing observation,
an agent following Schmidhuber’s goal would not behave in
intuitively curious and creative ways. One simple way to meet
Schmidhuber’s desideratum, for example, is to appropriate
resources and construct artifacts that generate cryptographic
secrets, then present the agent with a long and complex series
of observations encoded from highly regular data, and then
reveal the secret to the agent, thereby allowing the agent to
gain enormous compression on its past sensory data. An agent
following Schmidhuber’s goal is much more likely to build
artifacts of this form than it is to pursue anything resembling
human creativity. The system may not take this action in
particular, but it will take actions that generate at least that
much compression of its sensory data, and as a result, the
system is unlikely to be prosocial.

Building an agent to do something which (in humans) cor-
relates with the desired behavior does not necessarily result
in a system that acts like a human. The general lesson we
draw from cases like these is that most goals that are simple
to specify will not capture all the contextual complexities of
real-world human values and objectives [Yudkowsky, 2011].
Moral psychologists and moral philosophers aren’t locked in
decades- and centuries-long debates about the right codifica-
tions of ethics because they’re missing the obvious. Rather,
such debates persist for the simple reason that morality is com-
plicated. People want lots of things, in very particular ways,
and their desires are context-sensitive.

Imagine a simplified state space of possibilities that vary
in count (how many happy human-shaped objects exist), in
the size of the average happy human-shaped object, and in the
average moral worth of happy human-shaped objects. Human
experience has occurred in a small region of this space, where
almost all human-shaped objects emitting what looks like
happiness are ≈ 2-meter-sized humans with moral weight.
But the highest scores on the count axis occur in tandem with
low size, and the smallest possible systems that can mimic
outward signs of emotion are of low moral worth.

In linear programming, it is a theorem that the maximum of
an objective function occurs on a vertex of the space. (Some-
times the maximum will be on an edge, including its vertices.)
For intuitively similar reasons, the optimal solution to a goal
tends to occur on a vertex (or edge, or hyperface) of the possi-
bility space. Hibbard’s goal does not contain any information
about size or moral worth, and so agents pursuing this goal
only consider size and moral worth insofar as they pertain to
pushing toward the hyperface of maximum count. To quote
Russell [2014]:

A system that is optimizing a function of n vari-
ables, where the objective depends on a subset of
size k < n, will often set the remaining uncon-
strained variables to extreme values; if one of those
unconstrained variables is actually something we
care about, the solution found may be highly unde-
sirable.

The Sorcerer’s Apprentice problem arises when systems’ pro-
grammed goals do not contain information about all relevant
dimensions along which observations can vary. The agent has



been directed towards the wrong hyperface of the possibility
space.2

When confronted with this type of failure, many have an
impulse to patch the flawed goals. If Hibbard’s system would
make smiling animatronics, then find ways to require that the
emotions come from actual humans; if the system would then
put humans in a drugged stupor in order to make them smile,
forbid it from using drugs; and so on.

Such constraints cut off particular means by which the sys-
tem can get a higher count, but they don’t address the underly-
ing problem that the system is still maximizing count. If one
causal pathway is forbidden, then the system will follow the
nearest non-forbidden causal path—e.g., mechanically manip-
ulating the pleasure centers of human brains. It isn’t feasible
to patch every goal; nor is it safe to patch as many as come
to mind and assume that there are no unforeseen perverse
instantiations.

Intuitively, we would like to direct the intelligence of highly
advanced systems to solving some of this problem on our
behalf, and we would like such systems to attend to our likely
intentions even when our formal and informal representations
of our intentions are flawed. The notion of the operator’s
“intentions,” however, is unlikely to lend itself to clean formal
specification. By what methods, then, could an intelligent
machine be constructed to reliably learn what to value and to
act as its operators intended?

3 Inductive Value Learning
Correctly specifying a formal criterion for recognizing a cat in
a video stream by hand is difficult, if not impossible. This does
not mean, however, that cat recognition is hopeless; it means
that a level of indirection is required. An image recognition
system can be constructed and trained to recognize cats. We
propose that the value learning problem be approached by
similarly indirect means.

Inductive value learning via labeled training data raises a
number of difficulties. A visual recognition system classifies
images; an inductive value learning system classifies outcomes.
What are outcomes? What format would a value-learning data
set come in?

Imagine a highly intelligent system that uses large amounts
of data to construct a causal model of its universe. Imagine also
that this world-model can be used to reason about the likely
outcomes of the agent’s available actions, that the system has
some method for rating outcomes, and that it executes the
action leading to the most highly rated outcome. In order
for the system to inductively learn what to value, the system
must be designed so that when certain “training” observations
are made (or specially-demarcated updates to its world-model
occur), labeled training data extracted from the observation or
update alters the method by which the system ranks various
potential outcomes.

2Instead of trying to direct the system toward exactly the right
hyperface, one might try to create a “limited optimization” system
that doesn’t push so hard in whatever direction it moves. This seems
like a promising research avenue, but is beyond the scope of this
paper.

This simple model highlights a central concern and two
open questions relevant to inductive value learning.

3.1 Corrigibility
Imagine that some of an agent’s available actions allow it to
modify itself, and that it currently assigns high utility to out-
comes containing high numbers of animatronic replicas of
humans. It may be the case that, according to the system’s
world-model, all of the following hold: (1) if more training
data is received, those high-rated outcomes will have their
ratings adjusted downwards; (2) after the ratings are adjusted,
the system will achieve outcomes that have fewer cheap ani-
matronics; and (3) there are actions available which remove
the inductive value learning framework.

In this situation, a sufficiently capable system would favor
actions that disable its value learning framework. It would not
necessarily consider its own process of learning our values
a good thing, any more than humans must approve of psy-
chological disorders they possess. One could try to construct
protected sections of code to prevent the value learning frame-
work from being modified, but these constraints would be
difficult to trust if the system is more clever than its designers
when it comes to exploiting loopholes.

A robustly safe initial system would need to be constructed
in such a way that actions which remove the value learn-
ing framework are poorly rated even if they are available.
Some preliminary efforts toward describing a system with this
property have been discussed under the name corrigibility
by Soares and Fallenstein [2015], but no complete proposals
currently exist.

3.2 Ontology Identification
The representations used in a highly intelligent agent’s world-
model may change over time. A fully trustworthy value learn-
ing system would need to not only classify potential outcomes
according to their value, but persist in doing so correctly even
when its understanding of the space of outcomes undergoes a
major change.

Consider a programmer that wants to train a system to pur-
sue a very simple goal: produce diamond. The programmers
have an atomic model of physics, and they generate train-
ing data labeled according to the number of carbon atoms
covalently bound to four other carbon atoms in that training
outcome. For this training data to be used, the classification
algorithm needs to identify the atoms in a potential outcome
considered by the system. In this toy example, we can assume
that the programmers look at the structure of the initial world-
model and hard-code a tool for identifying the atoms within.
What happens, then, if the system develops a nuclear model of
physics, in which the ontology of the universe now contains
primitive protons, neutrons, and electrons instead of primitive
atoms? The system might fail to identify any carbon atoms in
the new world-model, making the system indifferent between
all outcomes in the dominant hypothesis. Its actions would
then be dominated by any tiny remaining probabilities that it
is in a universe where fundamental carbon atoms are hiding
somewhere.

This is clearly undesirable. Ideally, a scientific learner
should be able to infer that nuclei containing six protons are the



true carbon atoms, much as humans have done. The difficulty
lies in formalizing this process.

To design a system that classifies potential outcomes ac-
cording to how much diamond is in them, some mechanism is
needed for identifying the intended ontology of the training
data within the potential outcomes as currently modeled by
the AI. This is the ontology identification problem introduced
by de Blanc [2011] and further discussed by Soares [2015].

This problem is not a traditional focus of machine learning
work. When our only concern is that systems form better
world-models, then an argument can be made that the nuts
and bolts are less important. As long as the system’s new
world-model better predicts the data than its old world-model,
the question of whether diamonds or atoms are “really repre-
sented” in either model isn’t obviously significant. When the
system needs to consistently pursue certain outcomes, how-
ever, it matters that the system’s internal dynamics preserve (or
improve) its representation of which outcomes are desirable,
independent of how helpful its representations are for predic-
tion. The problem of making correct choices is not reducible
to the problem of making accurate predictions.

Inductive value learning requires the construction of an
outcome-classifier from value-labeled training data, but it also
requires some method for identifying, inside the states or
potential states described in its world-model, the referents of
the labels in the training data.

This could perhaps be done during the course of inductive
value learning. The system’s methods for inferring a causal
world-model from sense data could perhaps be repurposed
to infer a description of what has been labeled. If the sys-
tem adopts a better world-model, it could then re-interpret its
training data to re-bind the value labels.

This looks like a promising line of research, but it seems to
us to require new insights before it is close to being formaliz-
able, let alone usable in practice. In particular, we suspect that
ontology identification will require a better understanding of
algorithms that construct multi-level world-models from sense
data.

3.3 Ambiguity Identification
Reinforcement learning can be thought of as a method for
sidestepping these difficulties with value learning. Rather than
designing systems to learn which outcomes are desirable, one
creates a proxy for desirable outcomes: a reward function
specified in terms of observations. By controlling rewards
via a reward signal, the operator can then judiciously guide
the learner toward desired behaviors. Indirect proxies for de-
sired outcomes, however, face many of the same Sorcerer’s
Apprentice difficulties. Maximizing how often an operator
transmits a reward signal is distinct from the problem of maxi-
mizing the operator’s satisfaction with outcomes; these goals
may coincide in testing environments and yet diverge in new
environments—e.g., once the learner has an opportunity to ma-
nipulate and deceive its operator or otherwise hijack its reward
channel [Bostrom, 2014, chap. 12]. For further discussion,
see Soares [2015].

Superintelligent systems that achieve valuable real-world
outcomes may need goals specified in terms of desirable out-
comes, rather than rewards specified in terms of observations.

If so, then we will need some robust way of ensuring that the
system learns our goals, as opposed to superficially similar
goals.

When training a recognition system, producing satisfactory
training data is often a difficult task. There is a classic parable
of machine learning (told by, e.g., Dreyfus and Dreyfus [1992])
of an algorithm intended to classify whether or not pictures of
woods contained a tank concealed between the trees. Pictures
of empty woods were taken one day; pictures with concealed
tanks were taken the next. The classifier identified the latter set
with great accuracy, and tested extremely well on the portion
of the data that had been withheld from training. However, the
system performed poorly on new images. It turned out that the
first set of pictures had been taken on a sunny day, while the
second set had been taken on a cloudy day. The classifier was
not identifying tanks; it was identifying image brightness!

The same mistake is possible when constructing a train-
ing data set for inductive value learning. In value learning,
however, such mistakes may be more difficult to notice and
more consequential. Consider a training set that successfully
represents real-world cases of happy human beings (labeled
with high ratings) and real-world cases of pointless human
suffering (rated poorly). The simplest generalization from this
data may, again, be that human-shaped-things-proclaiming-
happiness are of great value, even if these are animatronics
imitating happiness. It seems plausible that someone training
an inductive value learner could neglect to include a suffi-
ciently wide variety of animatronics mimicking happiness and
labeled as low-value. How many other obvious-in-retrospect
pitfalls are hiding in our blind spots?

A training set covering all relevant dimensions that we can
think of may yet exclude relevant dimensions. A robustly safe
value learner would need to be able to identify new plausibly-
relevant dimensions along which no training data is provided,
and query the operators about these ambiguities. This is the
kind of modification that would help in actually solving the
value learning problem, as opposed to working around it. At
the same time, this is the kind of modification that could take
advantage of machines’ increased capabilities as the field of
AI advances.

Formalizing this idea is a key open problem. Given a data
set which classifies outcomes in terms of some world-model,
how can dimensions along which the data set gives little in-
formation be identified? One way to approach the problem
is to study how humans learn concepts from sparse data, as
discussed by Tenenbaum et al. [2011] and Sotala [2015]. Al-
ternatively, it may be possible to find some compact criterion
for identifying ambiguities in a simpler fashion. In both cases,
further research could prove fruitful.

4 Modeling Intent
The problem of ambiguity identification may call for methods
beyond the inductive learning of value from training data. An
intelligent system with a sufficiently refined model of humans
may already have the data needed, provided that the right
question is asked, to deduce that humans are more likely to
care about whether happy-looking human-shaped things have
brains than about the nearby breeze. The trouble would be



designing the system to use this information in exactly the
right way.

Picture a system that builds multi-level environment models
from sensory data and learns its values inductively. One could
then specially demarcate some part of the model as the “model
of the operator,” define some explicit rules for extracting a
model of the operator’s preferences from the model of the
operator (in terms of possible outcomes), and adjust the ratings
on various outcomes in accordance with the model of the
operator’s preferences. This would be a system which attempts
to learn and follow another agent’s intentions, as opposed
to learning from labeled training data—a “do what I mean”
(DWIM) architecture.

The inverse reinforcement learning (IRL) techniques of Ng
and Russell [2000] can be viewed as a DWIM approach, in
which an agent attempts to identify and maximize the reward
function of some other agent in the environment. However,
existing IRL formalizations do not capture the full problem;
the preferences of humans cannot necessarily be captured in
terms of observations alone. For example, a system, upon
observing its operator lose at a game of chess, should not
conclude that its operator wanted to lose at chess, even if the
system can clearly see where the operator “decided” to make a
bad move instead of a good one. Or imagine a human operator
who has a friend that must be put into hiding. The learner
may either take the friend to safety, or abandon the friend in
a dangerous location and use the resources saved in this way
to improve the operator’s life. If the system reports that the
friend is safe in both cases, and the human operator trusts the
system, then the latter observation history may be preferred by
the operator. However, the latter outcome would definitely not
be preferred by most people if they had complete knowledge
of the outcomes.

Human preferences are complex, multi-faceted, and often
contradictory. Safely extracting preferences from a model of a
human would be no easy task. Problems of ontology identi-
fication recur here: the framework for extracting preferences
and affecting outcome ratings needs to be robust to drastic
changes in the learner’s model of the operator. The special-
case identification of the “operator model” must survive as the
system goes from modeling the operator as a simple reward
function to modeling the operator as a fuzzy, ever-changing
part of reality built out of biological cells—which are made of
atoms, which arise from quantum fields.

DWIM architectures must avoid a number of other hazards.
Suppose the system learns that its operator model affects its
outcome ratings, and the system has available to it actions that
affect the operator. Actions which manipulate the operator
to make their preferences easier to fulfill may then be highly
rated, as they lead to highly-rated outcomes (where the system
achieves the operator’s now-easy goals). Solving this problem
is not so simple as forbidding the system from affecting the
operator; any query made by the system to the operator in
order to resolve some ambiguity will affect the operator in
some way.

A DWIM architecture requires significant additional com-
plexity on top of inductive value learning: the agent’s goal-
adjusting learning system no longer simply classifies out-
comes; it must also model humans and extract human prefer-

ences about human-modeled outcomes, and translate between
human-modeled future outcomes and future outcomes as mod-
eled by the system. The hope is that this complexity purchases
a system that potentially achieves full and direct coverage of
the complexity of human value, without relying on the abilities
of the programmers to hand-code exceptions for every edge
case or compose exactly the right training set. Further investi-
gations into inverse reinforcement learning or other methods
of constructing satisfactory initial operator models may be a
good place to start studying the plausibility of DWIM archi-
tectures.

5 Extrapolating Volition
A DWIM architecture may be sufficient when constructing a
system that reliably pursues “concrete” goals (such as “cure
cancer and then await instruction”), but it may not be sufficient
for more complex or sophisticated goals where the operators
themselves do not know what they intend—for example, “Do
what I would want, if I had more knowledge and more time
to think.” None of the frameworks discussed so far seem
powerful enough to specify philosophical ideas like the “ideal
advisor theory” of Rosati [1995] or the “reflective equilibrium”
of Rawls [1971]. Here, even “indirect” approaches to mak-
ing robust and beneficial AI systems run aground of actively
debated questions in moral philosophy.

One possible approach to resolving normative uncertainty
(e.g., about what the operators would want if they were wiser
or better people) would be to build a DWIM system that takes
a model of a human operator and extrapolates it in the direc-
tion of e.g. Rawls’ reflective equilibrium. For example, the
extrapolation might predict what the operator would decide if
they knew everything the system knows, or if they had consid-
ered many possible moral arguments [Bostrom, 2014, chap.
13].

However, a high-powered system searching for moral argu-
ments that would put the operators into a reflectively stable
state (as a computational expedient to fully simulating the op-
erators’ process of reflection) introduces a new set of potential
pitfalls. A high-powered search for the most persuasive moral
arguments that elicit retrospective approval of moral changes
might find arguments that induce psychotic breakdowns or reli-
gious conversions. The system should be constrained to search
for only “valid” moral arguments, but defining what counts
as a valid moral argument is itself a major area of normative
uncertainty and disagreement.

In this domain, querying for ambiguities is difficult. In
everyday practice, an argument that is persuasive to smart
and skeptical humans is often valid, but a superintelligent
search for persuasive arguments may well discover invalid but
extremely persuasive arguments.

It is difficult to identify technical approaches to indirect
normativity that are tractable today, although there have been
a few initial forays. Christiano [2014] informally proposes one
mechanism by which a system could perhaps safely extrapo-
late the volition of its operator. MacAskill [2014] has given an
extensive report on “meta-normativity,” touching upon many
different philosophical aspects of the difficulties of resolving
normative uncertainty. This is an area where further philo-



sophical study may make it clearer how to begin approaching
the associated long-run engineering problems.

6 Discussion
Just as human intelligence has allowed us to develop tools
and strategies by which we can control our environment, so
too could superintelligent systems develop tools and strate-
gies more powerful than our own, and gain correspondingly
greater control over future outcomes [Bostrom, 2014, chap. 6].
Although it is not clear how long the development of smarter-
than-human systems will take, or what approaches in AI or
other disciplines may prove most relevant to developing such
systems, early efforts in this area are justified by its importance
and neglectedness.

In the introduction to this paper, we discussed four different
ways in which the potential development of superintelligent
machines changes the task of AI safety and ethics work. Ad-
dressing all these concerns does not seem easy. Designs for AI
systems that are intended to become superintelligent will need
to be corrigible in the sense of Soares and Fallenstein [2015],
i.e., willing to assist their operators in attempted corrections.
The systems will need some method for learning and adopting
prosocial preferences, in light of the fact that we cannot expect
arbitrary rational actors to exhibit prosocial behavior in the
face of large power disparities. Operators will require meth-
ods for robustly communicating their intentions to the system,
if Sorcerer’s Apprentice scenarios are to be avoided. And
eventually, explicit methodologies for resolving normative
uncertainty may be required.

This paper has given a cursory overview of a number of
potential lines of research for AI value specification. We
discuss these ideas in part to give an overview of plausible
approaches to the concerns outlined above, and also because
these are topics that seem amenable to research starting sooner
rather than later, even in the face of great uncertainty about
the particular architectures of future AI systems. It is difficult
to know which lines of research will pan out, and we hope
that this survey inspires research along a number of new paths,
so that we have a firm theoretical grasp of how systems could
reliably and safely learn our values in principle before it comes
time to build systems that must do so in practice.
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